- GEISE, H. J., ROMERS, C. & RUTTEN, E. W. M. (1966). Acta Cryst. 20, 249.
- GOLDSZTAUB, M. S. (1935). Bull. Soc. franç. Minér. Crist. 58, 6.
- GOODENOUGH, J. B. (1963). Magnetism and the Chemical Bond. New York: Interscience Publishers.
- HOPPE, R. (1965). Bull. Soc. chim. Fr. p. 1115.
- International Tables for X-ray Crystallography (1959). Vol. II. Birmingham: Kynoch Press.
- LOEF, J. J. VAN & SLEGTENHORST, R. (1966). Personal communication.
- NEWNHAM, R. E. & DE HAAN, Y. M. (1962). Z. Kristallogr. 117, 235.
- ROOYMANS, C. J. M. (1959). Abstracts XVII Intern. Congr. Pure Appl. Chem., Munich, Vol. I, p. 155.

- ROOYMANS, C. J. M. (1962). J. Phys. Soc. Japan, 17, 722.
- ROOYMANS, C. J. M. (1965). Unpublished. See discussion by Hoppe (1965).
- STARR, C. (1940). Phys. Rev. 58, 984.
- SUZUKI, T. (1960). Acta Cryst. 13, 279.
- THÉRY, J., LEJUS, A. M., BRIANÇON, M. D. & COLLONGUES, R. (1961). Bull. Soc. chim. Fr. p.973.
- Théry, J. (1962). Thèse, Paris.
- TOROPOV, N. & SHISHAKOV, N. (1939). Acta physicochim. U.S.S.R. 11, 277.
- WATANABE, H. & FUKASI, M. (1961). J. Phys. Soc. Japan, 16, 1181.
- WYCKOFF, R. W. G. (1964). Crystal Structures. Vol.2. 2nd ed. p.436. New York: John Wiley.

Acta Cryst. (1967). 22, 771

X-ray Studies on the Partially Dehydrated Phases of some Paramagnetic Tutton Salts

By Gouri Ray*

Department of Magnetism, Indian Association for the Cultivation of Science, Calcutta 32, India

(Received 23 May 1966 and in revised form 18 October 1966)

Thermal dehydration study of some paramagnetic Tutton salts, Co(KSO₄)₂.6H₂O, Cu(KSO₄)₂.6H₂O and Cu(NH₄SeO₄)₂.6H₂O, revealed the formation of lower hydrates, *viz.* Co(KSO₄)₂.2H₂O, Cu(KSO₄)₂.2H₂O and Cu(NH₄SeO₄)₂.2H₂O. Powder photographs of these phases have been indexed by the methods of Ito and Lipson. Co(KSO₄)₂.2H₂O has been found to be monoclinic with cell dimensions a = 7.31, b = 13.25, c = 5.68 Å, $\beta = 97^{\circ}35'$, and space group P_{21}/a . The other two dihydrates are orthorhombic with cell-dimensions a = 14.58, b = 11.90, c = 10.40 Å for Cu(KSO₄)₂.2H₂O and a = 14.83, b = 12.39, c = 10.31 Å for Cu(NH₄SeO₄)₂.2H₂O. The probable space groups in both cases are *Pmn*2₁ or *Pmnm*. The probable natures of the structures of these dihydrates are discussed.

In a programme of study of thermal dehydration of paramagnetic Tutton salts and X-ray study of the lower hydrates so obtained – some results of which have been reported earlier (Bhowmik, 1961; Ray, 1965) – the dehydration of the following six Tutton salts was studied: Cu(KSO₄)₂.6H₂O, Cu(NH₄SeO₄)₂.6H₂O, Co(KSO₄)₂.6H₂O, Co(NH₄SO₄)₂.6H₂O, Ni(KSO₄)₂. 6H₂O, Ni(NH₄SO₄)₂.6H₂O. The dehydration curves for these six salts fall into two distinct categories. Those of the nickel salts and the cobalt ammonium salt show direct transformation to the anhydrous phase, but each of the three other salts shows the formation of a dihydrate at temperatures given in Table 1.

Table 1. Dehy	vdration date	t for the	six T	Tutton	salts
---------------	---------------	-----------	-------	--------	-------

	Temperature	of transition to
Salt	Dihydrate phase	Anhydrous phase
$Cu(KSO_4)_2.6H_2O$	50°C	115°C
$Cu(NH_4SeO_4)_2.6H_2O$	70	102
$Co(KSO_4)_2.6H_2O$	92	130
$Co(NH_4SO_4)_2.6H_2O$		78
$Ni(KSO_4)_2.6H_2O$		110
$Ni(NH_4SO_4)_2.6H_2O$		98

* Neé Bhowmik.

The lower hydrates were highly unstable, having a tendency to reconversion to the hexahydrate forms on exposure to the atmosphere. They could not be obtained as single crystals in spite of many attempts. Thus, information regarding the structure of these phases had to be obtained only from powder photographs. The samples for powder analysis were prepared in the following way: powdered hexahydrate was packed in a glass capillary with both ends open and heated above the transition temperature in an oven for 24 hours; this treatment was found sufficient for complete conversion into the dihydrate. The capillary was then sealed at both ends before removal from the oven so that risk of reconversion into the hexahydrate was avoided. X-ray photographs were taken with a Unicam 19 cm camera. The powder photographs thus obtained were ascertained to be due to the respective dihydrates only.

$Co(KSO_4)_2.2H_2O$

The pattern could not be indexed in terms of a cubic, tetragonal or hexagonal cell, and an attempt to apply Lipson's (1949) method failed, showing that the structure is probably either monoclinic or triclinic. However, the pattern could be indexed by applying Ito's (1950) method as shown below.

Assuming the first three lines to be due to pinacoidal reflexions, the indices 020, 001 and 200 could be assigned to them by trial. Higher orders of these reflexions were also present, and provisional values of a^* , b^* and c^* were obtained.

To determine the reciprocal cell angles $\alpha^* \beta^* \gamma^*$, pairs of observed Q's were searched for in such a manner, that if they were assumed to have indices h0l and h0l, relations of the following type were satisfied:

$$\frac{Q_{h0l} + Q_{h0\bar{l}}}{2} = h^2 a^{*2} + l^2 c^{*2} = Q'_{h0l}$$

(Similar relations for Q'_{hk0} and Q'_{0kl} hold good).

For several pairs of h and k, Q'_{hk0} coincided with observed Q values, and for several pairs of k and l, Q'_{0kl} coincided with observed Q values. Thus $\alpha^* = \gamma^* =$ 90° so that in the process of indexing, without using any intermediate triclinic cell, a monoclinic cell was directly arrived at. To find β^* , a pair of observed Qvalues were assumed to be Q_{201} and $Q_{20\overline{1}}$ and the values of β^* obtained therefrom could index several other pairs like Q_{131} and $Q_{13\overline{1}}$, Q_{221} and $Q_{22\overline{1}}$ etc. The whole pattern could thus be indexed by the following parameters.

$a^* = 0.13802$	$\alpha^* = 90^{\circ}$
$b^* = 0.0755$	$\beta^* = 82^\circ 25'$
$c^* = 0.17748$	$v^* = 90^\circ$

The real cell dimensions as deduced from above are a=7.31, b=13.25, c=5.68 Å, $\beta=97^{\circ}35'$.

Since these values satisfy the condition (Buerger, 1957)

$$|ac\cos\beta| \le a^2/2 \le c^2/2,$$

the cell cannot be reduced further. Hence the cell is primitive monoclinic. The experimentally determined value of the density was 2.31 g.cm⁻³, and the number of formula units per unit cell calculated therefrom was 2.07. The density calculated on the basis of Z = 2 was 2.22 g.cm⁻³.

Table 2. Observed and calculated values of $1/d^2$ of Co(KSO₄)₂.2H₂O with the indices

Serial		d			
no.	Intensity	(Å)	1/d2(obs)	1/d2(calc)	Index
1	\$	6.605	0.0229	0.0228	020
2	vs	5.634	0.0315	0.0315	001
3	w	3.627	0.0760	0.0762	200
4	S	3.554	0.0792	0.0799	121
5	ms	3.320	0.0907	0.0912	040
6	vs	3.259	0.0942	0.0947	201)
				0.0952	131
7	w	3.046	0.1078	0.1084	131 ´
8	5	3.003	0.1109	0.1103	140
9	w	2.907	0.1183	0.1175	22Ĩ
10	w	2.875	0.1210	0.1207	201
11	5	2.645	0.1430	0.1435	221
12	w	2.547	0.1541	0.1549	122
13	vw	2.473	0.1635	0.1638	112
14	vvw	2.411	0.1720	0.1720	231
15	5	2.317	0.1863	0.1866	15I)
				0.1859	241

Serial		đ			
no.	Intensity	(Å)	1/d2(obs)	$1/d^2(calc)$	Index
16	vw	2.268	0.1944	0.1940	320
17	w	2.240	0.1992	0.1993	22 <u>2</u>
18	vw	2.208	0.2021	0.2022	060
19	vw	2.186	0.2093	0.2094	132
20	vvw	2 ·148	0.2168	0.2122	042
21	w	2.021	0.2377	0.2372	251
				0.2367	061 ∫
22	vw	2.022	0.2446	0.2452	321
23	w	1.909	0.2744	0.2738	331]
				0.2747	34∏ ∫
24	w	1.880	0.2829	0.2835	003
25	W'	1.813	0.3041	0.3048	400
26	w	1.753	0.3257	0.3260	351
				0.3259	261
27	ms	1.733	0.3330	0.3331	42I
28	ms	1.660	0.3630	0.3623	401)
				0.3633	162 }
				0.3632	241 J
29	rvw	1.616	0.3839	0.3844	412
				0.3839	180_∫
30	vw	1.556	0.4130	0.4133	143
				0.4136	431
31	w.	1.538	0.4226	0.4219	181
32	W.	1.519	0.4337	0.4334	262
33	UW	1.490	0.4204	0.4200	233
34	vvw	1.457	0.4707	0.4700	442
35	vvw	1.439	0.4830	0.4828	402
36	vvw	1.323	0.5713	0.5719	124

Table 2 (cont.)

The conditions limiting possible reflexions as observed in the indices are

$$hkl:$$
 no condition
 $h0l:$ $h=2n$
 $0k0:$ $k=2n$.

So the space group $P2_1/a$ may be assigned to this phase.

 $Cu(KSO_4)_2.2H_2O$ and $Cu(NH_4SeO_4)_2.2H_2O$

The photographs of these two hydrates showed some striking resemblances. On analysis, both were found to be orthorhombic by the application of Lipson's method. Tables 3 and 4 show the indexing of these patterns. For Cu(KSO₄)₂.2H₂O, the values of the constants $A = \lambda^2/4a^2$, $B = \lambda^2/4b^2$ and $C = \lambda^2/4c^2$ are 0.0028, 0.0042 and 0.0055 respectively, whence the cell-dimensions are, a = 14.58, b = 11.90, c = 10.40 Å. From the value of the experimentally observed density, which is 2.65 g.cm⁻³, the number of formula units per unit cell comes out as 7.79. The density calculated on the basis of Z = 8 was 2.72 g.cm⁻³.

Table 3. Observed and calculated $\sin^2\theta$ values of $Cu(KSO_4)_2$. $2H_2O$ with the indices

Serial no.	Intensity	d (Å)	$\sin^2 \theta$ (obs)	$\sin^2 \theta$ (calc)	Index
1	S	7.771	0.0098	0.0097	011
2	US .	6.057	0.0164	0.0168	020
3	<i>tw</i>	5.451	0.0200	0.0196	120
4	w	5.202	0.0220	0.0220	002
5	w	4.709	0.0268	0.0262	012
6	w	4.400	0.0307	0.0307	301

	Table 3 (cont.)				Table 4 (cont.)						
Serial		d				Serial		d			
no.	Intensity	(Å)	$\sin^2 \theta(\text{obs})$	$\sin^2 \theta$ (calc)	Index	no.	Intensity	(Å)	$\sin^2 \theta(\text{obs})$	$\sin^2 \theta$ (calc)	Index
7	<i>t\S</i>	4.192	0.0338	0.0335	221	14	vs	3.799	0.0412	0.0406	122]
				0.0332	202					0.0402	031]
8	w	4.013	0.0369	0.0374	212	15	ms	3.712	0.0431	0.0432	400
9	5	3.766	0.0418	0.0416	122	16	ms	3.488	0.0488	0.0487	222
10	5	3.735	0.0426	0.0420	320	17	ms	3.419	0.0209	0.0206	312
11	w	3.614	0.0455	0.0448	400	18	vvw	3.330	0.0536	0.0231	103
12	w	3.539	0.0474	0.0475	321	19	vw	3.272	0.0248	0.0243	013
13	w	3.502	0.0484	0.0490	410	20	s	3.140	0.0603	0.0602	132
				0.0490	230 (21	vvw	3.032	0.0647	0.0643	421)
14	w	3.306	0.0544	0.0545	231					0.0647	140 ∫
				0.0545	411	22	w	2·966	0.0675	0.0683	232
15	US	3.166	0.0593	0.0208	032	23	ms	2.903	0.0705	0.0203	141
16	5	3.075	0.0629	0.0626	132	24	ms	2.866	0.0724	0.0731	501)
				0.0630	330 j					0.0728	240 ∫
17	5	3.011	0.0656	0.0663	023	25	w	2 ·719	0.0804	0.0811	422
				0.0649	213	26	vvw	2.669	0.0834	0.0836	431)
18	vs	2.964	0.0677	0.0672	040 j					0.0830	520 ∫
				0.0671	421	27	w	3.580	0.0893	0.0896	004
19	vw	2.864	0.0725	0.0727	041	28	w	2.513	0.0941	0.0938	512
20	w	2 ·716	0.0802	0.0797	511					0.0932	014 ∫
21	w	2.601	0.0879	0.0880	004	29	ms	2.464	0.0976	0.0969	050)
22	ms	2.437	0.1001	0.1004	242					0·097 2	600 ∫
23	ms	2.388	0.1049	0.1050	610	30	vw	2·418	0.1018	0.1025	051
24	ms	2.260	0.1164	0.1162	250)	31	ms	2.259	0.1164	0.1159	224
				0.1160	224)	32	ms	2·211	0.1215	0.1214	513
25	w	2.196	0.1232	0.1228	602	33	w	2.164	0.1269	0.1276	442
				0.1237	513 Ì	34	w	2.123	0.1318	0.1323	630
26	5	2.105	0.1341	0.1340	442 ´	35	w	1.982	0.1512	0.1515	613)
27	vw	2.037	0.1432	0.1427	701					0.1516	044
28	vw	2.029	0.1443	0.1445	115	36	vw	1.943	0.1574	0.1577	161 ´
29	ms	1.964	0.1540	0.1540	160	37	vvw	1.874	0.1692	0.1698	325
30	<i>vw</i>	1.884	0.1675	0.1679	261	38	vvw	1.854	0.1730	0.1728	800)
				0.1680	640 }					0.1726	524
				0.1669	315					0.1730	731
31	vw	1.853	0.1730	0.1732	062	39	w	1.787	0.1862	0.1868	552 Í
32	w	1.799	0.1836	0.1844	262	40	ms	1.754	0.1932	0.1926	460
33	w	1.742	0.1958	0.1958	154)	41	ms	1.717	0.2017	0.2016	006)
				0.1960	460					0.2014	515
34	5	1.712	0.2028	0·2035	163 Í	42	ms	1.675	0.2118	0.2124	206 ´
35	S	1.663	0.2149	0.2141	171	43	w	1.662	0.2150	0.2150	462)
36	ms	1.633	0.2229	0.2232	306					0.2148	553
37	vw	1.590	0.2352	0.2358	036	44	vw	1.631	0.2234	0.2226	9,1,0
38	vvw	1.507	0.2618	0.2610	336	45	w	1.614	0.2282	0.2279	226
39	5	1.633	0.2734	0.2737	017)	46	w	1.597	0.2329	0.2324	535
				0.2740	662 Ì	47	ms	1.550	0.2474	0.2480	080
40	w	1.456	0.2805	0.2800	280 ´	48	ms	1.522	0.2567	0.2566	922)
41	W	1.273	0.3669	0.3660	646					0.2563	181
			-							0.2570	734
						49	vw	1.501	0.2638	0.2632	571

Table 4. Observed and calculated $\sin^2\theta$ values of $Cu(NH_4SeO_4)_2$. $2H_2O$ with the indices

Serial		d			
no.	Intensity	(Å)	$\sin^2 \theta(\text{obs})$	$\sin^2 \theta$ (calc)	Index
1	vvw	8·266	0.0087	0.0083	101
2	vvw	7.442	0.0107	0.0108	200
3	ms	6·271	0.0121	0.0155	020
				0.0147	210
4	vs	5.635	0.0187	0.0182	120 ´
5	vvw	5.433	0.0201	0.0203	211
6	ms	5.157	0.0224	0.0224	002
7	vvw	4.786	0.0260	0.0263	220)
				0.0263	012
8	vvw	4.594	0.0282	0.0282	310 ´
9	ms	4.541	0.0289	0.0290	112
10	UW	4.446	0.0301	0.0299	301
11	vs	4.330	0.0317	0.0319	221
12	UW	4.238	0.0331	0.0332	202
13	ms	4.021	0.0368	0.0371	212

Similarly for $Cu(NH_4SeO_4)_2$. $2H_2O$, the values of the constants A, B, C are 0.0027, 0.0039 and 0.0056, from which the real cell dimensions come out as a = 14.83, b = 12.39, c = 10.31 Å. The number of formula units per unit cell, as calculated from the observed density 2.89 g.cm⁻³, is 7.82. The density calculated on the basis of Z = 8 is 2.96 g.cm⁻³.

0.2703

0.2827

0.2970

0.3046

0.3233

0.3371

0.3969

0.3933

0.2703

0.2821

0.2974

0.3051

0.3042

0.3227

0.3378

0.3866

0.3927

10,0,0

165

735

 $\left. \begin{smallmatrix} 10,3,0\\536 \end{smallmatrix} \right\}$

383

716

318

1,10,0

ms

vvw

w

w

w

vvw vvw

ms

1.483

1.450

1.414

1.397

1.356

1.328

1.239

1.229

50 51

52 53

54

55 56 57

	$Cu(NaSO_4)_2.2H_2O$	$Co(KSO_4)_2 \cdot 2H_2O$	$Cu(NH_4SO_4)_2 \cdot 2H_2O$	$Cu(KSO_4)_2 \cdot 2H_2O$	$Cu(NH_4SeO_4)_2.2H_2O$
	(kröhnkite) Monoclinic	Monoclinic	Orthorhombic	Orthorhombic	Orthorhombic
$q(\mathbf{A})$	5.78	7.31	14.84	14.58	14.83
$b(\mathbf{A})$	12.58	13.25	12.52	11.90	12.39
$c(\mathbf{A})$	5.48	5.68	10.69	10.40	10.31
ß	108° 30'	97° 35′			
Space group	$P 2_1/c$	$P2_1/a$	Pmnm or Pmn2 ₁	$Pmnm$ or $Pmn2_1$	<i>Pmnm</i> or <i>Pmn</i> 2_1
Number of					
formula					2
units per cell	2	2	8	8	8

Table 5. Comparison of the crystallographic data for the dihydrates

Tables 3 and 4 show that in both these compounds the conditions limiting possible reflexions are same. They are as follows:

> *hkl*: no condition 0kl: no condition hk0: no condition h0l: h+l even h00: (h=2n)0k0: no condition 00l: (l=2n).

The conditions agree with both the space groups Pmn2₁ and Pmnm.

It is interesting to compare the crystallographic data of the above dihydrates with those of the mineral kröhnkite, Cu(NaSO₄)₂.2H₂O, which has been shown to bear some structural relationship with the Tutton salts (Dahlman, 1952). Such a comparison is made in Table 5, which appears to suggest a close structural relationship between the three dihydrates and kröhnkite. The (100) projection of kröhnkite (Fig. 1) shows how the octahedral coordination of the paramagnetic ion is completed by sharing four oxygen atoms with two SO₄ tetrahedra, and a system of octahedron-tetrahedron chains is formed, in the interstices of which the monovalent metal ions are accomodated. It is quite probable that the structures of the three dihydrates consist of similar basic features.

The author expresses her sincerest thanks to Prof. A. Bose, D. Sc., F. N. I., Head of the Department of

Fig. 1. (100) projection of kröhnkite (after Dahlman).

Magnetism, for suggesting the problem and his keen interest throughout the progress of the work. She is also thankful to Mr S. Ray, Research Officer in charge of the X-ray laboratory of the said Department, for general supervision and helpful discussions.

References

Вноwмік, G. (1961). Indian J. Phys. 35, 499. BUERGER, M. J. (1957). Z. Kristallogr. 109, 42. DAHLMAN, B. (1952). Ark. Min. Geol. 1, 339. Ito, T. (1950). X-ray studies in Polymorphism. Tokyo: Maruzen. LIPSON, H. (1949). Acta Cryst. 2, 43.

RAY, G. (1965). Indian J. Phys. 39, 307.